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Penalized spline smoothing using Kaplan-Meier 
weights in semiparametric censored regression 

models 

Jesus Orbe∗ and Jorge Virto∗ 

Abstract 

In this article we consider an extension of the penalized splines approach in the context 
of censored semiparametric modelling using Kaplan-Meier weights to take into account 
the effect of censorship. We proposed an estimation method and develop statistical in-
ferences in the model. Using various simulation studies we show that the performance 
of the method is quite satisfactory. A real data set is used to illustrate that the proposed 
method is comparable to parametric approaches when assuming a probability distribu-
tion of the response variable and/or the functional form. However, our proposal does not 
need these assumptions since it avoids model specifcation problems. 
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1. Introduction 

In this paper we present a proposal for estimating regression models where the variable 
to be explained is censored. That is, our research context is a scenario where the values 
of the explanatory variables are fully known but some observations of the variable to 
be explained are not known because there is censored data. This problem is very com-
mon in survival or duration analyses, where the sample individuals analysed are tracked 
over time until the specifc event studied occurs (death, failure, breakdown, etc) or the 
study ends. In practice, there are various types of censoring, but the most common is 
right censoring. There is an a large body of literature on censored data, much of which 
can be grouped into two main approaches: one comprising models that directly specify 
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the effect of the explanatory variables on the variable to be explained (the most widely 
used of which are those known as Accelerated Failure Times (AFT) see for example 
Kalbfeisch and Prentice, 2002) and the other comprising hazard models, the best known 
and most widely applied of which is Proportional Hazard (PH), proposed by Cox (1972). 
In the former a regression model is specifed between the logarithmic transformation of 
the variable to be explained and the explanatory variables. The latter specifes a rela-
tionship between the hazard function of the variable to be explained and the explanatory 
variables. 

PH models have the advantage that the effects of the explanatory variables can be 
estimated without having to assume a probability distribution for the variable to be ex-
plained which is usually unknown. However they also have the drawback that the as-
sumption of proportional hazard functions must be imposed. Another drawback of the 
hazard functions approach is that the effect of the explanatory variables on the variable 
to be explained is hard to interpret: the results obtained from Cox model fts are harder to 
explain to non-statisticians and provide less information than AFT-type models, which 
are more attractive because they can be interpreted simply and straightforwardly (Wei, 
1992; Reid, 1994; Stare, Heinzl and Harrel, 2000; Swindell, 2009). Therefore, in terms 
of interpretability of results the linear regression model is an attractive alternative to 
models for hazard functions or hazard ratios. However, its main disadvantage is that the 
usual estimation procedure for AFT-type models requires a probability distribution to be 
assumed. 

The proposal presented here seeks to make the modelling of this type of data more 
fexible without imposing restrictions or assumptions that may prove restrictive or false 
in practice. We also propose an approach for making inferences in this fexible model. 
Our proposal can be classed as an AFT type model. Several papers using this particular 
approach can be found in the literature which enable the regression model to be estimated 
with no need to choose a specifc probability distribution. They consider various least 
squares approaches, and include the papers by Koul, Susarla and Van-Ryzin (1981) and 
Leurgans (1987), who propose transforming the censored variable, and those by Miller 
(1976), Buckley and James (1979) and Stute (1993), which present proposals with a 
similar approach but without transforming the variable to be explained. There is also the 
rank-based estimation methods approach (see for example Tsiatis, 1990; Lai and Ying, 
1992; Jin et al., 2003). 

These proposals represent considerable progress in the specifcation of the model, 
avoiding the biases derived from wrong choices of probability distribution. But it is 
possible to go even further in making these methodologies more fexible, since all these 
proposals consider a known parametric relationship to specify the effect of the explana-
tory variables on the variable to be explained. In practice, it is quite common for the 
functional relationship between regressor variables and outcome not to be known. One 
way of avoiding errors likely to lead to biased conclusions in specifying these effects 
is not to impose a specifc parametric functional relationship between the variable to 
be explained and the explanatory variable, but to assume only that that relationship is a 



97 Jesus Orbe and Jorge Virto 

smooth function, i.e. to consider a nonparametric estimation of that specifc effect. The 
estimation of nonparametric functional relationships involving non-censored data has 
been widely studied and various proposals have been presented in the literature. They 
can be grouped into two different approaches: methods based on kernel smoothers (Sil-
verman, 1986; Härdle, 1990) and methods based on spline smoothers (Eubank, 1988; 
Wahba, 1990; Green and Silverman, 1994; Eilers and Marx, 1996; Wood, 2017). 

Applying these nonparametric estimation techniques is not straightforward in the 
case of censored data, so the earlier studies must be adapted to take into account the ef-
fect of censoring in the estimation process. Our proposal falls under the spline smoothers 
approach in the specifc context of semiparametric regression models with censored data. 
This semiparametric regression model has already been studied and discussed in regard 
to samples without censored observations. It was initially analysed by Heckman (1986) 
and Rice (1986) using an approach with spline smoothers and by Speckman (1988) us-
ing an approach with kernel smoothers. Several authors have investigated inference in 
the semiparametric regression model when the response variable is subject to right cen-
soring. Orbe, Ferreira and Núñez Antón (2003) use an approach based on smoothing 
splines while Zou, Zhang and Qin (2011) and Chen et al. (2015) use penalized splines 
and monotone B-splines, respectively. Aydin and Yilmaz (2018) apply the ideas pro-
posed by Koul et al. (1981) in the context of a partial linear regression model and De Una˜ 
Álvarez and Roca Pardiñas (2009) consider the use of kernel smoothers in an additive 
censored regression model. 

A previous paper by Orbe and Virto (2018) proposes an extension of the P-splines 
method of Eilers and Marx (1996), which has become very popular in applications and 
in theoretical work and is an active area of research (Eilers, Marx and Durbán, 2015), 
to handle censored responses using Kaplan-Meier weights (Kaplan and Meier, 1958). 
But the proposal by Orbe and Virto provides no tools to allow statistical inferences to be 
made, and considers the case of a unique covariate. It is therefore of limited use in prac-
tice, where the response variable usually depends on a large set of explanatory variables 
and it is of interest to draw inferences. Here we propose an extension of that previous 
paper that enables the technique to be applied to more general problems where the effect 
of other covariates is incorporated parametrically (parametric component) in addition to 
the nonparametric component for modelling effects where the functional relationship is 
not known, that is, a semiparametric regression model. Such extension is a well-studied 
problem for case of uncensored data (see, for example, Heckman, 1986; Schimek, 2000; 
Holland, 2017). We also develop variance estimators for both the parametric and non-
parametric components and provide the tools needed to develop statistical inferences in 
this general framework and study performance by calculating coverage probabilities of 
the confdence intervals for the true values of interest in several simulation studies. 

The rest of the paper is organized as follows. Section 2 shows how to extend the 
P-splines method when the sample has censored observations and proposes a censored 
data version of penalized splines. Section 3 examines the methodology proposed using 
simulation studies. Section 4 presents an application of the method to a real data set and 
Section 5 concludes. 
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2. Methodology 

The existence of censored observations is very common in survival analysis or duration 
analysis, where the aim is to analyse a variable that measures the duration of an event or 
state or the time that elapses until a specifc event occurs. In other words, we consider 
a model that allows us to analyse the effect of certain explanatory variables on a vari-
able to be explained T , the duration variable or usually its logarithmic transformation, 
where some of its observations are censored. Furthermore, we separate the effects of 
the explanatory variables of the model into two components: a component captures the 
relationship between some explanatory variables (X) and the response variable assuming 
a specifc parametric functional form (parametric component) and the other component 
captures the effects of other explanatory variables (Z) whose functional form is unknown 
(nonparametric component) and which we leave unspecifed, without assuming a partic-
ular parametric relationship. Therefore, we are considering a semiparametric regression 
model but in a context where the variable to be explained in the model is right-censored: 

Ti = Xi 
T α + f (Zi)+ εi i = 1, . . . ,n (1) 

where we assume that the values of the variable T : t1, . . . , tn are independent and gener-
ated with an unknown probability distribution function F . That is, we are not assuming 
any probability distribution for the error term. In addition some observations of that vari-
able T are not known due to the problem known as right censoring. Therefore, what we 
actually observe in the sample is the variable yi = min(ti,ci), where the values c1, . . . ,cn 

are the values of the censoring variable C. For the censoring mechanism it will be as-
sume: a) the lifetimes and the censoring times are independent and, b) given the lifetime, 
the covariates do not provide any further information as to whether censoring will take 
place or not, i.e., P[T ≤ C|X ,Z,T ] = P[T ≤ C|T ] (see Stute, 1993, 1999, for a discussion 
of these assumptions). 

We use the indicator δi = I(ti ≤ ci) to show whether in particular the value ti is 
observed, i.e., it is not censored. In addition, Xi is the (p × 1) vector that collects the 
values of the p explanatory variables of the parametric component for the i-th individual, 
α is the (p×1) coeffcients vector of the model associated with those regressor variables, 
f (Z) represents the nonparametric component of the model, which captures the unknown 
functional form of the effect of the regressor variable Z and ε is the error term satisfying 
E(ε|X ,Z) = 0 and Var(ε|X ,Z) = σ2. 

2.1. Estimation method 

Our proposal is based on the nonparametric estimation approach proposed by Eilers 
and Marx (1996) together with the idea of using Kaplan-Meier weights, proposed by 
Stute (1993), to control the effect of censoring in the estimation of the model. Thus 
following this particular approach, if we want to estimate the nonparametric component 
of the model without assuming a particular functional form f (·) to the unknown effect 
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of the regressor variable Z, we will use an approximation that rewrites or represents 
that effect by using a set of q B-splines type basis functions: B1(z), . . . ,Bq(z) (see, for 
example, Dierckx, 1993; De Boor, 2001). Thus we rewrite the unknown function as 
f (z) = ∑q

j=1 γ jB j(z). 
In order to solve the problem of choosing the number of the knots of the bases, 

we use the proposal of Eilers and Marx (1996) which introduces a penalty term in the 
estimation process of the model. This penalty term is based on the idea of previous 
works by O’Sullivan (1986, 1988) that propose to use a penalty term that measures the 
smoothness of the function through the integrated squared second derivative of the ftted 
function. Eilers and Marx (1996) in their proposal of the P-splines methodology suggest 
using, with the same idea, a different penalty term, which generalizes and simplifes the 
previous proposal, introducing a penalty but on the difference of the γ j coeffcients of 
the adjacent B-splines. 

In order to account for the effect of censoring we follow the ideas of Orbe and Virto 
(2018) who extend the possibility of applying the P-spline methodology to the context 
of samples with censored observations in a simple model. Thus, to estimate the model 
(1) we propose to minimize the following expression: 

˜ ° 2 n q q 

∑ w[i] y(i)− x ∑ γ jB j(z[i]) +λ ∑ (∆kγ j)
2 (2)T α −[i] 

i=1 j=1 j=k+1 

where y(1), . . . ,y(n) are the ordered values of the observed variable yi = min(ti,ci), xT is[i] 
the (1 × p) vector with the values of the regressors of the parametric component for the 
individual corresponding to the ordered observation y(i), w[i] is the Kaplan-Meier weight 
associated with that observation y(i) and this weight is calculated using the estimator 
(F̂ n) (Kaplan and Meier, 1958) of the probability distribution function F of the variable 
to be explained T : 

˛ ˝δ[ j]δ[i] i−1 n − j 
n − j +1

w[i] = F̂n(y(i))− F̂n(y(i−1)) = ∏ 
j=1 

(3)
n − i +1 

without the need to assume a probability distribution for the error term, therefore a fex-
ible methodology is used regarding to parametric assumption of the error. Furthermore 
∆γ j denotes the difference between the coeffcients of adjacent B-splines (γ j − γ j−1) and 
∆kγ j indicates that this difference is of order k. This difference measures the smoothness 
of the function f (z), the larger the difference between the coeffcients of adjacent B-
splines the less smooth the function. Finally the parameter λ is the smoothing parameter 
that controls the degree of the smoothness of the estimated function in the estimation 
process. 

The expression to minimize (2) can be rewritten in matrix form as follows: 

(Y − Xα − Bγ)TW (Y − Xα − Bγ)+λγT DT 

kDkγ (4) 
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where X is the (n × p) design matrix for the variables of the parametric component. 
Y is the vector of the observed variable to be explained. B is a (n × q) matrix where 
Bi j  = B j(zi). W is a (n × n) diagonal matrix with Kaplan-Meier weights. Dk is the 
matrix used to rewrite the ∆k term in matrix form. 

2.2. Algorithm 

The optimization process of the expression (4) leads to the following equations: 
˜ 
X TWX  

° 
α = X TW (Y − Bγ) (5)˜ ° 

BTWB  +λ DT 

kDk γ = BTW (Y − Xα) (6) 

In practice, the estimations of α and γ can be obtained by means of an iterative process 
or backftting algorithm that iteratively solves each set of equations (5) and (6) until the 
convergence of the estimators is reached. We describe the algorithm process as follows: 

⃗• Step 1. In equation (6) give initial value of α̨(0) = 0 and estimate γ by˝ ˙−1γ̨(0) = BTWB  +λ DT 

kDk BTWY . 

• Step 2. Substitute γ by γ̨(0) in equation (5) and estimate α by 

α̨(1) = [X TWX ]
−1 X TW (Y − Bγ̨(0)) = [X TWX ]

−1 X TW (I − Hc)Y ˜ ° −1where Hc = B BTWB  +λ DT 

kDk BTW is the smoothing matrix for the censored 
case obtained from equation (6). 

• Step 3. Substitute α by α̨(1) in equation (6) and estimate γ by˝ ˙−1γ̨(1) = BTWB  +λ DT 

kDk BTW (Y − Xα̨(1)). 

• Step 4. Iterate step 2 and step 3 until convergence is achieved. 

The algorithm is considered to have converged when the difference between the 
GCVc (see equation 8) of two successive iterations is less than a really small threshold: 
|GCVc(new)− GCVc(old)| < 0.00001 · GCVc(new). 

2.3. Choice of smoothing parameter and knots 

It should be noted that in this iterative process we need to make a number of choices, 
such as the number of knots (Kc) and the choice of the smoothing parameter λ , in order 
to estimate the components of the model. The use of a penalty term in the optimization 
criterion makes the determination of the number of knots not a crucial decision as long as 
a suffcient number of knots is chosen. To choose this number of knots in samples with 
censored data we propose the following automatic choice criterion that takes into account 
the sample information available due to the existence of censored data by multiplying 
by one minus the proportion of censored observations: 

ˆ ˆ ˇ ˇm
Kc = round min ,40 · (1 − PC) (7)

4 
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where m is the number of distinct values of the Z variable of the nonparametric compo-
nent and PC represents the level of censoring, measured as a percentage, existing in the 
analysed sample. The expression (7) is a modifcation to the one proposed for the choice 
of the number of knots in Ruppert (2002) that we propose for application in contexts 
with censored data. 

The choice of the smoothing parameter is a more relevant choice. To choose an 
optimal smoothing level we propose to use the following version of the generalized 
cross validation (GCV) criterion adapted for application in contexts with censored data: 

n w[i](y(i) − ŷ(i))2 

GCVc = ∑ (8)
(n− φ tr(Hc))2 

i=1 

where φ is a parameter that tries to correct for the overftting problem that occurs when 
using the ordinary GCV criterion. Wood (2017) proposes to use what he refers to as the 
double cross validation and suggests using a value of φ = 1.5. This value is justifed in 
different ways in the literature, see for example Kim and Gu (2004) for the uncensored 
case and Orbe and Virto (2021) for the censored case. The performance of proposal (8) 
has been analysed using a simulation study and, as in the uncensored case, the choice of 
φ = 1.5 is better in almost all situations than φ = 1, with the difference increasing as the 
censoring increases. 

2.4. Variances estimation 

In this section we develop the necessary tools to perform statistical inferences for the 
parametric and nonparametric components. 

In order to determine the variance of the parametric component, we frst solve equa-˜ ° −1tion (6) getting γ = BTWB+ λ DT 

kDk BTW (Y − Xα). Therefore, substituting Bγ = 
Hc(Y − Xα) in equation (5) we get (X TWX)α = X TW [Y − Hc(Y − Xα)]. Solving for α 
we obtain α̨ = [X TW (I − Hc)X ]

−1 X TW (I − Hc)Y . Accordingly, the variance-covariance 
matrix of this estimator can be expressed as: 

˙˜ ° −1Var̋(α̨) =  σ̨2 X TW (I − Hc)X X TW (I − Hc)(I − Hc)
tWX  

ˆ˜ ° t 
(X TW (I − Hc)X)−1 (9) 

In a similar way, we solve equation (5) getting α = (X TWX)
−1 X TW (Y − Bγ). Plug-

ging Xα = X (X TWX)
−1 X TW (Y −Bγ)=  Hp(Y −Bγ), where Hp = X (X TWX)

−1 X TW , in ˜ ° 
equation (6) we get BTWB+ λ DT 

kDk γ = BTW [Y − Hp(Y − Bγ)]. Solving for γ we getˇ ˘−1γ̨  = BTW (I − Hp)B+ λ Dk 
T Dk BTW (I − Hp)Y . Accordingly, the variance-covariance 

matrix of this estimator can be expressed as: 
˙ˇ ˝ σ 2 BTW (I − Hp)B+ λ DT 

˘−1Var(γ̨) =  ̨  kDk BTW (I − Hp)(I − Hp)
tWB  

�ˇ �t 
� ˘−1BTW (I − Hp)B+ λ DT 

kDk (10) 
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In order to calculate these estimated variances we need to estimate the σ 2 parameter. 
We propose the estimator given by the following expression: 

∑n 
1 nw[i](y(i)− ŷ(i))2 

σ̃ 2 = i= 

n − tr(Hc)− p 

3. Simulation study 

In this section the performance of the proposed methodology is studied using a simula-
tion study. In order to do that we consider the next semiparametric model: 

Ti = α1X1i +α2X2i + f (Zi)+ εi (11) 

where for the parametric component of the model: the variable X1 is generated from a 
uniform distribution U(0,2), X2 from a uniform distribution U(−1,3), being α1 = −1 
and α2 = 1 the values of the coeffcients. For the nonparametric component, we consider 
three different cases for the relationship f (·) between T and a relevant covariate Z, see 
Table 1 for the chosen functional forms and the probability distribution of the variable Z. 
For the distribution of the error term (ε) has been used the normal distribution N(0,σ2), 
where the value of σ 2 parameter has been chosen to obtain a similar signal/noise (SN) 
ratio in each example (see Table 1). In order to study the effect of censoring, we consider 
a censoring variable C generated independently from a uniform distribution U(1,b). 
The value of parameter b changes to consider three different levels of censored data: 
10%, 25% and 40%. Therefore, we observe (y1,x11,x21,z1,δ1), . . . ,(yn,x1n,x2n,zn,δn) a 
sample of size n, where yi = min(ti,ci) is the observed survival time, i.e., the minimum 
between the survival time ti and the censoring value ci. In addition, it is known through 
the indicator variable δi = I(ti ≤ ci) which observations are not censored. We use three 
sample sizes: n = 200, n = 500 and n = 1000. For each of the nine scenarios, three 
sample sizes for three levels of censorship, we consider 1000 Monte Carlo replications. 

Table 1. Three Case Studies. 

Name zi f (zi) σε 
2 SN ratio 

Case (i): 
Quadratic zi ∼ U [0,4] 22 +4zi − zi 0.40 3.5 

Case (ii):
Sinusoidal zi ∼ U [0,10] 2 + exp{sin(zi)} 0.20 3.3 

Case (iii): 

Logit zi ∼ U [0,1] 
1

2 +
1 + exp{−20(zi − 0.5)} 

0.06 3.3 

For each of the 27 cases analysed in this simulation study we have estimated model 
(11) following the estimation proposal presented in the previous section, the censored P-
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spline estimator (CPS), where the choice of the smoothing parameter λ and the number 
of knots of B-splines have been chosen using formulas (8) and (7), respectively. 

Tables 2, 3 and 4 present a general summary of the results obtained for each combi-
nation of censoring level and sample size in each of the three cases of functional forms 
studied for model (11). That is, Table 2 summarizes the estimation of case (i), where 
f (z) is a quadratic function. The frst two rows of Table 2 present the estimated Mean 
Square Error (MSE) of each coeffcient (α1 and α2) of the parametric component: 

1000 

MSE(α̂ p) =  
1 ∑ (αp − α̂ p j)

2 p = 1,2
1000 j=1 

and the third row the Averaged Mean Square Error (AMSE) of the nonparametric com-
ponent: ˜ ° 

10001 ∑n
i=1( f (zi) − f̂ j(zi))

2 

AMSE = ∑1000 nj=1 

Rows four to six of Table 2 present the empirical bias and rows seven to nine the 
coverage probabilities of the 95% confdence intervals based on the resampling. 

Tables 3 and 4 present the same information for the estimates of case (ii) and (iii), 
where f (z) is a sinusoidal function and a logit function, respectively. Tables 2 to 4 show 
the good performance of the proposed method in terms of MSE and AMSE, empirical 
bias and coverage probabilities. 

Furthermore, if we focus on the estimation of each component of model (11), we 
have that for case (i), quadratic function: Figure 1(a) presents the MSE estimates for the 
nonparametric component using different censoring levels and sample sizes, where, as 
can be seen, the estimates of the nonparametric component improve as the sample size 
increases and the level of censoring in the sample decreases. Figures 1(b) and (c) show 
the estimates of the coeffcients of the parametric component (α1 and α2), where it can 
be seen that the coeffcient estimates are good and that their accuracy also improves as 
the sample size increases and the level of censoring in the sample decreases. In addition, 
Figure 1(d) presents the mean value of the estimates of the quadratic form function 
compared to the true functional form to be estimated. As can be seen, the proposal we 
made works very well refecting the true functional form of f (·). In this Figure 1(d), we 
can also verify the good performance of the asymptotic confdence intervals generated 
with the estimates of the variances proposed in the previous section. As can be seen, for a 
confdence level of 95%, the proposed mean confdence interval (blue lines) is consistent 
with the corresponding 95th percentile interval of the simulations (green lines). Finally, 
the coverage probabilities of the confdence intervals presented in Table 2 show that the 
actual coverage probability is quite close to the nominal coverage probability. 

Similar results, where the good performance of our proposals can be appreciated, are 
obtained for case (ii), sinusoidal function, see Figures 2(a)-(d), and for case (iii), logit 
function, see Figures 3(a)-(d). 

As suggested by the referees, we conduct additional simulations considering a nor-
mal distribution for the censoring variable and also additional simulations considering 
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non-normal error distributions such as the Weibull distribution. The new results obtained 
(not shown) confrm the good performance of the proposed method and are consistent 
with those presented in this section. 

Table 2. Results of simulation study for the quadratic function. 
n = 200 n = 500 n = 1000 

Censored % 10% 25% 40% 10% 25% 40% 10% 25% 40% 

MSE (α̃1 and α̃2) and AMSE ( ̃f ) ×103 

α̃1 3.090 3.741 5.965 1.324 1.440 2.370 0.521 0.656 0.992 

α̃2 0.722 0.906 1.581 0.275 0.302 0.541 0.121 0.181 0.259 

f̃ 9.783 12.170 21.109 4.126 5.056 8.730 2.105 2.580 4.424 

Empirical Bias 

α̃1 -0.00149 0.00099 0.01130 -0.00319 -0.00290 0.00042 0.00214 0.00354 0.00575 

α̃2 0.00289 0.00206 -0.00257 0.00049 0.00039 -0.00335 0.00036 -0.00036 -0.00195 

f̃ -0.00033 -0.00148 -0.01630 0.00239 0.00272 0.00067 -0.00232 -0.00253 -0.00575 

Coverage probabilities of the 95% confdence intervals 

α̃1 0.938 0.955 0.947 0.928 0.950 0.947 0.946 0.946 0.948 

α̃2 0.945 0.946 0.934 0.941 0.960 0.943 0.960 0.926 0.957 

f̃ 0.938 0.941 0.923 0.939 0.939 0.925 0.946 0.936 0.933 

Table 3. Results of simulation study for the sinusoidal function. 
n = 200 n = 500 n = 1000 

Censored % 10% 25% 40% 10% 25% 40% 10% 25% 40% 

MSE (α̃1 and α̃2) and AMSE ( ̃f ) ×103 

α̃1 0.806 1.060 1.521 0.285 0.362 0.560 0.136 0.154 0.233 

α̃2 0.189 0.266 0.376 0.062 0.087 0.132 0.035 0.044 0.064 

f̃ 4.088 5.205 7.970 1.702 2.023 3.072 0.870 1.047 1.545 

Empirical Bias 

α̃1 -0.00543 -0.00202 0.00083 0.00085 0.00098 0.00209 0.00060 0.00016 0.00148 

α̃2 -0.00060 -0.00073 -0.00145 0.00051 0.00058 -0.00093 -0.00016 -0.00017 -0.00136 

f̃ 0.00674 0.00311 -0.00152 -0.00116 -0.00167 -0.00324 -0.00021 0.00010 -0.00077 

Coverage probabilities of the 95% confdence intervals 

α̃1 0.944 0.936 0.925 0.956 0.955 0.944 0.948 0.956 0.940 

α̃2 0.949 0.930 0.938 0.952 0.938 0.944 0.944 0.943 0.962 

f̃ 0.930 0.927 0.918 0.932 0.941 0.932 0.942 0.938 0.941 
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Figure 1. Results of simulation study for the quadratic function. (a) Mean square errors for the 
nonparametric part using different censoring levels and sample sizes. (b) α̂1. (c) α̂2. (d) Mean 
value of the estimates of the quadratic form function compared to the true functional form to be 
estimated. 
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Figure 2. Results of simulation study for the sinusoidal function. (a) Mean square errors for the 
nonparametric part using different censoring levels and sample sizes. (b) α̂1. (c) α̂2. (d) Mean 
value of the estimates of the sinusoidal form function compared to the true functional form to be 
estimated. 
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Figure 3. Results of simulation study for the logit function. (a) Mean square errors for the 
nonparametric part using different censoring levels and sample sizes. (b) α̂1. (c) α̂2. (d) Mean 
value of the estimates of the logit form function compared to the true functional form to be 
estimated. 
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Table 4. Results of simulation study for the logit function. 
n = 200 n = 500 n = 1000 

Censored % 10% 25% 40% 10% 25% 40% 10% 25% 40% 

MSE (α̃1 and α̃2) and AMSE ( f̃ ) ×103 

α̃1 0.072 0.098 0.172 0.024 0.036 0.064 0.011 0.016 0.027 

α̃2 0.017 0.025 0.046 0.006 0.008 0.019 0.003 0.004 0.009 

f̃  0.309 0.397 0.710 0.128 0.164 0.311 0.065 0.085 0.169 

Empirical Bias 

α̃1 0.00012 0.00029 0.00101 0.00042 0.00061 0.00035 -0.00029 -0.00022 -0.00011 

α̃2 0.00026 0.00015 -0.00008 -0.00015 -0.00026 -0.00002 -0.00002 -0.00003 -0.00014 

f̃  -0.00037 -0.00038 -0.00098 -0.00022 -0.00029 -0.00040 0.00035 0.00020 0.00014 

Coverage probabilities of the 95% confdence intervals 

α̃1 0.944 0.955 0.933 0.953 0.944 0.941 0.946 0.941 0.948 

α̃2 0.950 0.930 0.924 0.939 0.947 0.938 0.957 0.938 0.956 

f̃  0.944 0.939 0.916 0.943 0.938 0.93 0 0.949 0.941 0.938 

4. Empirical application: PBC data 

The Mayo Clinic Primary Biliary Cirrhosis dataset contains information from 418 Mayo 
Clinic patients with primary biliary cholangitis (PBC), previously called primary biliary 
cirrhosis, an autoimmune disease of the liver. The frst 312 cases in the dataset partici-
pated in a Mayo Clinic trial in PBC conducted between 1974 and 1984 comparing the 
drug D-penicillamine (treatment) with a placebo. The dataset provides information about 
the observed survival time from the date of registration in the trial and a large number 
of clinical, biochemical, serologic and histologic variables such as patient’s age at frst 
diagnosis, severity of edema (0 no edema, 0.5 moderate and 1 for severe edema), blood 
values related to liver function such as bilirubin, albumin, alkaline phosphotase and pro-
thrombin time amid other explanatory variables, and an indicator of patient status (dead 
or alive) in July 1986. The dataset can be downloaded from the R package survival (Th-
erneau, 2021; R Core Team, 2018). The additional cases are from an independent set of 
106 Mayo Clinic primary biliary cholangitis patients who were elegible for the trial but 
declined to participate. This dataset has been previously used, for example, in Dickson 
et al. (1989), Therneau and Grambsch (2000) and Fleming and Harrington (2005), in 
censored regression models. 

The studies by Therneau and Grambsch (2000) and Fleming and Harrington (2005) 
deal with the relationship between the covariates and the survival response variable. 
They conclude that age, edema score, bilirubin and albumin logarithms and prothrom-
bin time are the variables that best explain patient survival. In addition, these studies 
analyse the need for transformations of the continuous variables in the proposed model 
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Table 5. Estimate and standard deviation (SD) of estimated parameters for the Mayo Clinic 
Primary Biliary Cirrhosis dataset from AFT, Stute and CPS methods. 

age edema trt log(albumin) log(bili) 
AFT -0.0246 -0.7692 -0.0627 1.4880 -0.5356 

(0.0065) (0.2303) (0.1273) (0.5268) (0.0694) 
Stute -0.0166 -0.9249 -0.0950 1.6161 -0.3028 

(0.0076) (0.3489) (0.1371) (0.6015) (0.0732) 
CPS -0.0168 -0.9163 -0.0991 1.6197 -0.3061 

(0.0064) (0.1900) (0.1291) (0.4578) (0.0633) 

concluding that the relationship between prothrombin time (protime) and patient survival 
is likely to be non-linear. 

In this application we incorporate the protime variable into the model in a fexible 
way only assuming that prothrombin time enters in the model via some unknown smooth 
function f (·): 

log(T ) = α1 +α2age +α3edema +α4trt +α5log(albumin)+α6log(bili)+  f (protime)+ ε 
(12) 

We estimated model (12) using the censored P-spline method proposed in section 2. 
To evaluate the performance of the censored P-spline estimator, a quadratic relationship 
between the logarithm of survival and the protime variable has been proposed as an alter-
native, i.e., f (protime) = α7 protime +α8 protime2 in equation (12). Assuming that this 
parametric specifcation is correct, two methodologies known and proposed in the litera-
ture on survival analysis can be used to ft the model (12). These estimators can be used 
as a benchmark to evaluate the performance of the censored P-spline method proposed. 
The frst and more restrictive approach is the parametric Accelerated Failure Time (AFT) 
methodology (Kalbfeisch and Prentice, 2002), based on the restricted assumptions of 
knowing the probability distribution of the response variable and the functional form re-
lating the protime variable and patient survival, that estimates the α coeffcients of the 
model using the maximum likelihood estimator. Thus, considering an AFT lognormal 
model, we estimate the α coeffcients assuming a normal probability distribution. The 
second methodology, proposed by Stute (1993), is less restrictive in that it does not need 
the assumption of the probability distribution of the response variable, but it also trusts 
the quadratic functional form. That is, it needs to know the form of the relationship be-
tween the response variable and the covariate. This methodology estimates coeffcients 
using weighted least squares via Kaplan-Meier weights (Stute, 1993). 

Table 5 presents the estimates of the parametric components of the model (12) using 
these three methods. It can be seen that all three methods generate similar estimates and 
result in a biologically reasonable model estimate. As previously reported in the liter-
ature, all three methods agree that treatment with the drug D-penicillamine (treatment) 
has no signifcant effect on patient survival. 
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Figure 4. Estimated relationship using three methodologies: AFT lognormal, Stute’s approach 
and CPS estimator 

Figure 4 shows the estimates of the unknown function f (protime) for the three ap-
proaches with the scatterplot of observed log survival time versus prothrombin time. 
Patients indicated by ⃝ are dead and those indicated by ⊠ are alive in July 1986; that 
is, the dead patients have uncensored survival times and the live patients have censored 
survival times. 

In conclusion, the AFT methodology and Stute‘s proposals performance depends 
on the correct specifcation of the relationship between the duration and the protime 
variable. In this application it seems that the relationship between log survival and pro-
thrombin time is quadratic, so both these methodologies perform reasonably well. Our 
proposal does not need to assume a specifc parametric functional form and, however, it 
adequately estimates the relationship obtaining very similar results to the previous ones. 
However, if the functional form had been wrongly chosen these parametric methods 
would have led to a serious problem of incorrect specifcation and therefore to wrong 
conclusions. Therefore, we can see our approach as a robust solution to misspecifcation 
of the model. 
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5. Discussion and conclusion 

In this paper, we have proposed an estimation method in the context of censored semi-
parametric models based on the P-spline approach of Eilers and Marx (1996) using 
Kaplan-Meier weights to take into account the effect of censorship. We present an exten-
sion of the estimation methodology proposed by Orbe and Virto (2018) to a context with 
more than one explanatory variable, which is very useful from a practical point of view. 
Furthermore, we develop the necessary tools to perform statistical inferences in this gen-
eral framework, providing, for example, confdence intervals for both the nonparametric 
component and the coeffcients associated with the regressors of the parametric compo-
nent. The simulation studies conducted illustrate the good performance of the estimation 
method which satisfactorily estimates both the nonparametric component and the coeff-
cients associated with the parametric part in the various examples studied. Furthermore, 
the accuracy of estimates improves as the censored level reduces and the sample size 
is increased. The coverage probabilities of the confdence intervals proposed have been 
calculated in several simulation studies and it has been found that the actual coverage 
probability is quite close to the nominal coverage probability in all the scenarios anal-
ysed. 

The application to real data serves to illustrate the potential advantages of our pro-
posal which is comparable with the parametric method AFT and Stute’s approach when 
the functional form chosen is correct. Otherwise, it must be mentioned that if the func-
tional form or the probability distribution are wrongly chosen this would lead to a serious 
problem of incorrect specifcation of the model and therefore to incorrect conclusions. 
The proposed method would be more fexible and robust as it does not need to impose a 
specifc probability distribution for the response variable, nor assume a functional form 
for the relationship between the censored response variable and the covariate, which are 
usually unknown in practice. Therefore, its application in samples with censored data is 
particularly useful in contexts of survival or duration analysis where censored observa-
tions are common. 
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´De Uña Alvarez, J. and Roca Pardiñas, J. (2009). Additive models in censored regres-
sion. Computational Statistics and Data Analysis, 53:3490–3501. 

Dickson, E. R., Grambsch, P. M., Fleming, T. R., Fisher, L. D., and Langworthy, A. 
(1989). Prognosis in primary biliary cirrhosis: Model for decision making. Hepatol-
ogy, 10:1–7. 

Dierckx, P. (1993). Curve and Surface Fitting with Splines. Numerical Mathematics and 
Scientifc Computation. Oxford University Press, Oxford. 

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties 
(with discussion). Statistical Science, 11:89–121. 

Eilers, P. H., Marx, B. D., and Durbán, M. (2015). Twenty years of p-splines. SORT-
Statistics and Operations Research Transactions, 39(2):149–186. 

Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression. Marcel Dekker, 
New York. 

Fleming, T. R. and Harrington, D. P. (2005). Counting Processes and Survival Analysis. 
John Wiley & Sons, Hoboken: New Jersey. 

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and General-
ized Linear Models, volume 58 of Monographs on Statistics and Applied Probability. 
Chapman and Hall, London. 
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